博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hbase优化小结
阅读量:5132 次
发布时间:2019-06-13

本文共 2995 字,大约阅读时间需要 9 分钟。

  

目录:

  1,背景

  2,GC

  3,hbase cache

  4,compaction

  5,其他

 

1,背景

 

项目组中,hbase主要用来备份mysql数据库中的表。主要通过接入mysql binlog,经storm存储到hbase。由于是实时接入binlog写入,写的压力不是很大,主要是晚上离线计算的时候,需要将hbase中的表同步到HDFS中,这个时候对hbase的读性能以及全表扫描性能要求有些高,以尽量较少数据导入时间。由于之前时间仓促,以及对hbase了解有限等原因,hbase这块问题多多。当前阶段比较突出的问题主要有两个方面:第一,full GC频繁。 第二,尽量提升hbase的读性能,尤其是scan的性能。

 

2,GC

问题:通过jstat命令发现regionserver进程full GC非常的频繁,甚至发现full GC的次数比young gc的次数还要多。full gc严重导致region server不稳定,经常运行几天后regionserver会死掉。

原因:通过分析gc log以及实时观察,发现主要是读频发的时候,young区的S1,S2会很快到达100%,导致新的对象快速进入old区,此外,old区full gc不能有效快速回收内存,导致old去的内存一直维持在高位(总是高于设定的CMSInitiatingOccupancyFraction),所以导致old gc比young gc还多。

尝试办法:由于young区在hbase读频繁的时候很快被填满,所以很自然的尝试便是增大young区的大小。但是大了以后产生了两个负面效果,一是young gc时间变长了,二是还是不能解决read的时候young区被快速填满的问题。这时意识到,单纯通过GC调参来解决full gc频繁问题的思路行不通了。

mark一下优化后的GC配置:

 

export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS $HBASE_JMX_BASE -Xmx2000m -Xms2000m -Xmn750m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:-CMSIncrementalMode -XX:CMSInitiatingOccupancyFraction=70"

 

export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS $HBASE_JMX_BASE -Xmx16000m -Xms16000m -Xmn7000m -XX:MaxDirectMemorySize=5g -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:-CMSIncrementalMode -XX:CMSInitiatingOccupancyFraction=75 -Xloggc:${HOME}/hdp_data/hbase/rs.log-`date +'%Y%m%d%H%M'` -verbose:gc -XX:+PrintGC -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCApplicationConcurrentTime -XX:SurvivorRatio=2 -XX:+PrintTenuringDistribution"

 

 

3,hbase cache

hbase中与内存相关的主要是memstore和block cache,memstore主要服务于写,而block cache主要服务与读。有关block cache的详细介绍,可以参看。hbase默认的block cache策略是LRU block cache,这时所有的cache都放在java进程的heap中,所以导致对hbase读的时候heap中的内存快速增长。bucket cache通过将date block缓存到direct buffer管理的堆外内存中,有效解决了这个问题。通常采用一种混合的策略即combined block cache(LRU block cache + bucket cache). LRU block cache主要用来缓存bloom过滤器,索引等。配置如下:

GC参数设置:-XX:MaxDirectMemorySize=5g,设置java进程使用direct memory的最大值。

hbase-site.xml中配置如下:

hfile.block.cache.size
0.4
hbase.bucketcache.ioengine
offheap
hbase.bucketcache.size
4196

设置以后,hbase regionsever进程full gc问题圆满解决。

 

4,hbase compaction

hbase compaction主要是合并memstore flush到磁盘上的HFile文件。主要分minor compaction和major compaction。minor compaction只会合并很少的hfile,这个花费的时间也不是很长。而major compaction会合并指定table的所有的HFile,所以花费的时间也比较长,但是能够显著提高hbase的读性能。考虑到白天hbase集群的负载并不是很高,所以很自然想到就是做手工major compaction。写一个简单的脚本就好了。其实就一行语句:echo "major_compact 'tablename'" | hbase shell,然后通过crontab定时启动就好了。做了major compaction以后region server的block locality明显好转,hbase读的性能提升提升了50%以上,晚上导表时间几乎缩短了一半。

 

5,其他

 

其他的方法也尝试了一些,比方说设置hbase.client.scanner.caching参数,以及在每台datenode的机器上都部署region sever以增强data locality,还有增大hbase导表的并发数等,这些有一些效果,但是不是太明显。

总的来说,这次主要是熟悉hbase相关的原理和配置,然后通过设置一些策略和参数来提升hbase的性能,虽然比较简单粗暴,但是以上方法已基本满足当前需求,所以对hbase读性能的优化暂时告一段落。接下来会对hbase的稳定性以及可运维性做一些测试。

转载于:https://www.cnblogs.com/superhedantou/p/5424682.html

你可能感兴趣的文章
C#double转化成字符串 保留小数位数, 不以科学计数法的形式出现。
查看>>
牛的障碍Cow Steeplechase
查看>>
Zookeeper选举算法原理
查看>>
3月29日AM
查看>>
利用IP地址查询接口来查询IP归属地
查看>>
HTML元素定义 ID,Class,Style的优先级
查看>>
构造者模式
查看>>
http和https的区别
查看>>
Hbuild在线云ios打包失败,提示BuildConfigure Failed 31013 App Store 图标 未找到 解决方法...
查看>>
找到树中指定id的所有父节点
查看>>
今天新开通了博客
查看>>
AS3优化性能笔记二
查看>>
ElasticSearch(站内搜索)
查看>>
4----COM:a Generative Model for group recommendation(组推荐的一种生成模型)
查看>>
UVA 11137 - Ingenuous Cubrency
查看>>
js阻止事件冒泡的两种方法
查看>>
Java异常抛出
查看>>
[SQL Server 系] T-SQL数据库的创建与修改
查看>>
74HC164应用
查看>>
变量声明和定义的关系
查看>>